Category Archives: Anatomy and Physiology

The Benefits of Deep Breathing

Annalies Corse BMedSc, BHSc, Masters Candidate (USYD)

Breathing for health would already come as no surprise to you. Failure to breathe is incompatible with sustaining life. It’s one of the major vital signs monitored in emergency rooms and examined by paramedics to ascertain ones level of consciousness and determine imminent danger to life. In not so life-threatening circumstances, we recognize breathing as one of the quickest and simplest ways to quell excess stress, guide us through anxiety and stem the physical and emotional discomfort of a panic attack. Taking a deep breath helps millions of people everyday, whether they are addressing the world at a press conference, quarrelling with a friend, birthing a baby or attending an important meeting.

The benefits of deep breathing don’t have to be set-aside for times in life where a good deep breath helps you rise to a stressful challenge. Deep breathing has far reaching benefits on many organ systems. Lets consider which aspects of your health will benefit most from deep breathing and how to easily incorporate this practice into daily life.

Respiration (breathing) does not simply mean filling your lungs with air. The main goal of respiration is to deliver oxygen (O2) to every cell and tissue of your body, whilst also removing carbon dioxide (CO2). In order to achieve this, respiration takes place over four key phases:

  1. Pulmonary ventilation. This is simply the inhalation and exhalation of air from the outside environment to inside our body. Air must reach the smallest structures of our lungs, tiny sac-like structures known as alveoli.

Deep breathing facilitates the delivery of sufficient air and O2 to the alveoli, whilst also expelling sufficient amounts of CO2 upon exhalation.

  1. Diffusion of O2 and CO2 between the alveoli and blood, which are in direct contact with each other in the lungs.

Deep breathing helps to deliver sufficient O2 to blood, where it combines with haemoglobin, a protein in our red blood cells. Deep breathing during exhalation helps rid the body of CO2 (a waste product of cellular respiration) via the alveoli.

  1. Transport of O2 and CO2 in blood and body fluids into and out of cells.

Delivery of sufficient O2 to cells via deep breathing is essential for thousands of chemical reactions, most notably metabolism and the production of energy as ATP.

  1. Other facets of respiration, including the regulation of pH (acidity/alkalinity) in your body.

The oxygenation of haemoglobin via deep breathing is one of the most vital buffering systems of the human body. Sufficient oxygenation of haemoglobin is required to prevent dangerous shifts in blood pH (acidity/alkalinity) levels.

Deep breathing is necessary during intense physical activity in order to deliver oxygen to hard working muscles. It is also a renowned stress reliever. The practice of deep breathing is so inextricably linked to health that it forms the foundation of many health and healing modalities including yoga, meditation, and pilates. It is known by many names in these practices, including diaphragmatic breathing, abdominal breathing, belly breathing and paced respiration. The ability of deep respiration to focus the mind and stem anxiety makes it an important practice in the martial arts, from gentle tai chi and qi gong through to combative tae kwon do and jujitsu.

Systems that will benefit most

  • Nervous system. A good, deep breath will help to stimulate the parasympathetic division of your autonomic nervous system. This is the section of the nervous system predominant during rest activities. Deep breathing relaxes the nervous system. Considering that modern life is full of stress, deep breathing is probably the most portable stress reliever we have.
  • While the liver receives most of the glory regarding detoxification (followed closely by the kidneys, bowel, lymphatics and skin), respiration is responsible for ridding the body of the gaseous waste products of human metabolism. CO2 is the major waste product here, but other minor gaseous wastes are also expelled on exhalation.
  • Pain relief. Any woman has been through labour, or any person who has suffered the pain of injury and trauma will be able to relate to the power of breathing as a form of analgesia. This requires effort, as our natural instinct when in pain is to hold our breath. If initiated, deep breathing through pain is known to increase endorphin levels, which are natural pain killers.
  • Lymphatic system. Our lymphatic system is a network of vessels that carry lymphatic fluid throughout the body. Unlike blood vessels, lymphatic vessels are not powered by the heart, thus requiring other ‘pumps’ to move lymphatic fluid around. One of these pumps is good respiration, facilitated by deep breathing. The lymphatics are involved in detoxification.
  • Energy production. It stands to reason that the higher the oxygen content of your blood, the better your energy levels will be
  • Digestive system. Deep, diaphragmatic breathing encourages blood flow to abdominal organs, including those of the digestive tract. This can help to facilitate peristalsis (muscular movements of the digestive tract). Additionally, a calm nervous system is required for efficient digestion. By supporting your nervous system with deep breathing, you also facilitate healthy digestion.

Practical tips for better breathing.

Due to our busy lives, we often do not breath properly and in a very shallow manner. Here are some practical tips to help you reconnect with the feeling of deep breathing:

  1. Sit up straight and walk tall. Improved posture automatically helps fill your lungs with more air when you breathe.
  2. Allocate some time each day for deep breathing: at your desk, in the shower or in bed at the beginning and end of the day. 5 to 10 minutes is all it takes to help make this a habit.
  3. Feel your body move when you breathe… is anything moving? Deep breathing is rather active and uses multiple muscle groups. Focus on pushing your abdominal area in and out to enhance deep breathing, as opposed to the rise and fall of your shoulders (this indicated shallow breathing).
  4. Consider looking in to the practice of Buteyko breathing. 


  1. Guyton, A. and Hall, J. (2000). Textbook of Medical Physiology (Tenth Edition). W. B. Saunders Company. Harcourt Health Sciences. Philadelphia, Pennsylvania.
  2. Harvard Medical School. The family Health Guide (2015). Relaxation techniques: Breath control helps quell errant stress response. Harvard Health Publications. Available at:
  3. Moseley, A. et al. (2005). The effect of gentle arm exercise and deep breathing on secondary arm lymphedema. Lymphology. 38: 136-145.
  4. Westerdahl, E. et al. (2005). Deep-Breathing Exercises Reduce Atelectasis and Improve Pulmonary Function After Coronary Artery Bypass Surgery. Chest. 128 (5): 3482-3488.

Written for and originally published by the MINDD Foundation

Image Source:


Gut Feelings and the Gut Brain Axis


Gut Feelings and the Gut Brain Axis

Annalies Corse BMedSc, BHSc

Written for and originally published by the MINDD Foundation:

For the past few years, the topics of mental health, emotional health and psychological wellbeing have received some much-needed attention. What was once an area only discussed in the seclusion of a medical appointment, counselling session or support group, emotional health is now a mainstream aspect of our total health and wellbeing. Health blogs, scientific journals and medical conferences are teeming with advice and new research on how to support this fundamental facet of our health.

One area of integrative medicine gaining momentum in mental health research is the Gut-Brain Axis. This axis involves chemical signals that occur between your gastrointestinal tract and your nervous system. Studies are showing the intestinal microbiota are particularly influential here, communicating with the brain via several physiological pathways. In the future, its possible that many mental health conditions will be treated via amendment of our intestinal microbial populations.

What is the Mechanism?

In medical science research, disease correlations are often found between a specific environmental factor (e.g., diet, lifestyle, medication, pollutant) and a resulting condition or disease state. Correlations are interesting to researchers and the general public alike, but correlations do not prove causation. What is required to prove causation is a cellular mechanism, the discovery of a molecular event that ultimately links a specific environmental factor with causing a condition.

Does a mechanism exist between the gut microbiome having an influence on brain health? The science for this is very strong, and three mechanisms are receiving a lot of attention:

1) The immune mechanism. Microbial populations can cause immune activation directly at the gut mucosal surface membranes. This is especially the case when microbes are pathogenic (disease causing) members of the microbiome. The enhanced inflammatory response in the gut leads to stimulation of the peripheral immune system. This immune stimulation is able to stimulate specific neurons (nerves) associated with serotonin, a neurotransmitter implicated in many behavioural and emotional health disorders.

2) The vagus nerve mechanism. The Gut Brain Axis is a two-way communication network between your central nervous system (which includes your brain and spinal cord) and your enteric nervous system (a nerve network in your gut). Essentially, this anatomical link establishes a direct, physical connection between the emotional centres of the brain and intestinal function. Studies are revealing that the gut microbiota may signal the brain via nerves, hormones, immune responses and antibodies.

3) The bacterial waste product mechanism. Funnily enough, the link between gut and brain health is not new. Just over 100 years ago, patients with depression, anxiety and psychosis were ‘purged’ of their imbalanced state of mind with colonic irrigation and abdominal surgeries. The idea was that poisons originating in the gut were the root cause of these mental health issues. These days, modern medicine has identified these toxins as metabolic by-products (wastes) of certain bacterial populations. Many of these less favourable gut microbes produce neuroactive compounds (including neurotransmitters such as serotonin, melatonin, histamine, acetylcholine and gamma amino butyric acid, GABA) that directly influence brain activity.

Mental Health Conditions Associated With Poor Gut Health

The composition of the gut microbiome is believed to influence the brain in the following conditions:

• Autism
• Anxiety
• Bi-polar
• Depression
• Insomnia
• Schizophrenia
• Poor concentration, aggression, temper and difficulty relaxing
• Overwhelming sense of tension and pressure
• A vast array of other behavioural issues, such as procrastination, teeth grinding and restlessness to name a few.

Take Away Advice:

• Avoid the over use of antibiotics. Thankfully, this message is becoming louder in mainstream medicine. The overuse of antibiotics is one of the main methods of disrupting and destroying a healthy balance of good bacteria in the gut. Only use antibiotics when absolutely necessary, if there is no other alternative.
• Stress management. Everyone finds different life matters stressful, and some people do not find traditional ‘de-stressing’ activities effective. Firstly, identify what causes you the most stress on a daily basis, and speak to a supportive person about ways you can try to manage this. A prolonged stress response releases stress hormones into our body, which in turn have a direct effect on the balance of bacteria in our gut. You can clearly see the vicious circle here.
• Diet. Specific diets and foods are known to encourage the growth of good bacteria, preventing dysbiosis and even restoring gut health. Examples of foods in this category include prebiotic foods (radishes, Jerusalem artichokes, leeks, asparagus, carrots, sweet potato, onions and garlic are all particularly good), probiotic foods (fermented foods such as kefir, yoghurt, Kyr, kombucha and fermented vegetables, coconut cheese).
• Remove processed sugar and processed foods from your diet. Focus on obtaining natural sugars from fresh vegetables and fruits instead.
• Probiotic therapy can be prescribed for you, and is a very effective way of restoring the health of your microbiome. This course of action is likely necessary for long-term emotional health issues.

Written by Annalies Corse BMedSc, BHSc


1. Carabotti, M., et al. (2015). The Gut Brain Axis: Interactions Between Enteric Microbiota, Central and Enteric Nervous Systems. Annals of Gastroenterology. 28(2): 203-209.

2. El Aidy, S. et al. (2014). Immune Modulation of the Brain-Gut Microbe Axis. Frontiers in Microbiology. Evolutionary and Genomic Microbiology. April, 2014. Available at:

3. Monteil-Castro, A. et al. (2103). The Microbiota-Gut-Brain Axis: Neurobehavioural Correlates, Health and Sociality. Frontiers in Integrative Neuroscience. 7: 70. Available at:

4. Reardon, S. (2014). Gut Brain Link Grabs Neuroscientists. Nature. 515: 7526. Available at:

5. Schmidt, C. (2015). Mental Health May Depend on Creatures in the Gut. Scientific American. Available at:

Image credit: Nature Reviews Neuroscience

Neurological Networks: powered by Nutrition and Lifestyle


Neurological Networks: Powered by Nutrition and Lifestyle

Annalies Corse BMedSc, BHSc

Written for and originally published by the MINDD Foundation:

 Broadly speaking, neurological conditions are disorders of both the central (brain and spinal cord) and peripheral (all body nerves) nervous systems. This collection of conditions is so vast, many sub-categories of disorders exist. Mental health conditions, dementia’s, epilepsy, acquired brain and spinal cord injuries, multiple sclerosis, autism and learning difficulties are all forms of neurological illness, but each is very different. The aetiologies (causes) of these diseases represent some of the most complicated clinical situations for modern medicine to manage.

Despite the intricacies of these pathologies, some are renowned for presenting in infancy and childhood. Others present in young adulthood. Some conditions are endured by individuals their whole lives, only to receive some clinical insight and solutions from integrative health and medicine later in life. This article will discuss neurological conditions that predominantly present in childhood. Each has great propensity for healing and reversal through the biomedical approach of nutritional, lifestyle and integrative medicine. Neurological health is a central pillar supporting the work of the MINDD Foundation.

Scientific literature is accumulating more and more research that children with the conditions listed below are deficient in micronutrients essential to cognitive, mental and behavioural health. Without treatment interventions, these conditions do persist in to adulthood.

Conditions associated with compromised neurological development:

  • Autism Spectrum Disorder (ASD)
  • Attention Deficit (Hyperactivity) Disorder (ADHD)
  • Learning and language delays/impairment: including dyslexia and dyspraxia
  • Visual processing delay
  • Auditory processing delay
  • Other sensory processing disorders
  • Gross and fine motor skill delay
  • Socialisation and emotional problems
  • Behavioural concerns: including aggression, bed wetting, short tempers and poor concentration

Any of the above conditions or situations represents signs that a) thorough routine medical investigation is required b) illness is present and change is required c) nutritional and possibly allied behavioural therapies are essential.

Neurological conditions linked to mental and emotional health:

  • Obsessive Compulsive Disorder (OCD)
  • Objective Defiance Disorder (ODD)
  • Pyrrol Disorder
  • Anxiety and Depression
  • Bipolar Disorder
  • Schizophrenia

Compromised Neurotransmitter Biochemistry:

In a previous article published by The MINDD Foundation, the entire range of human neurotransmitters implicated in neurological conditions were discussed. A link to this article can be found here. Key neurotransmitters discussed include Acetyl Choline, Adrenalin, Dopamine, Gamma Amino Butyric Acid, Glutamine, Histamine, Noradrenalin and Serotonin.

 Key nutrients for neurological health:

  • Vitamins: A, C, D, E. Vitamins B1, B2, B3, B5, B6, B9 (folic acid) and B12.
  • Minerals: Zinc, Magnesium, Manganese, Calcium, Iron, Chromium and Selenium
  • Amino acids: Tyrosine, Taurine, Glycine, Methionine, Glutathione, and Glutamine
  • Essential fatty Acids: Saturated Fatty Acids (SFA’s): required for the structure of phosphatidylcholine, sphingosine and other lipids essential for building healthy neural tissues. Poly-unsaturated Fatty Acids (PUFA’s): Alpha linolenic acid, Eicosapentanoic acid (EPA) and Docosahexanoic acid (DHA) are all forms of omega 3 fatty acids. These are abundant in brain tissue and breast milk

Problematic environmental substances and contaminants:

  • Lead (Pb): this heavy metal can substitute for calcium ions. Lead is particularly toxic to the developing brain.
  • Mercury (Hg): methylmercury bioaccululates in the food chain. Degree of exposure dictates the severity if neurologic issues, ranging from infant mortality to very subtle developmental delays.
  • Arsenic (As): Inorganic arsenic (sodium arsenite). Contamination of ground water with As is a significant environmental health issue for some countries.
  • Pesticides: for example, organophosphates such as DDT.
  • Solvents: used in everything from cosmetics, pharmaceuticals to household cleaners, paints and varnishes.

Breast milk as a contamination source

It goes without saying that if you can breastfeed, breast milk is best for babies. However, a mother is exposed to countless toxic substances in the environment, the home, the workplace, her beauty and hygiene products and her diet. Many environmental contaminants known to trigger neurologic problems are lipid soluble and are stored in adipose tissue, thus breast tissue and breast milk are potential sources of contaminant exposure for infants. Mothers must plan for reducing her toxin exposure while both pregnant and breast-feeding. Ideally, this would start in the very early pre-conception months.

What you can do immediately:

The take-away advice that you can implement today, without immediately seeking advice from an integrative health professional is as follows:

  1. Just Eat Real Food! Keep things simple; avoid anything that is a false, manufactured food-like substance
  2. Beware of preservatives: get to know food labels, or simply avoid any food with a very long shelf life.
  3. Avoid processed foods: they are deplete of micronutrients, difficult to digest and offer no real nutritional value for building health.
  4. Smart cooking methods: including fermenting, and choice of cooking oils, fats and liquids. Learn how to make healthy staples and take classes.
  5. Ready made foods: avoid these, as they often contain preservatives or additives that may not require a food label.
  6. Eliminate packaged foods: these often fall in to the processed, preservative laden category. You will become very savvy regarding packaged foods as you learn more. Healthy kitchen and pantry classes can really help you here.

In theory, these changes can be made immediately at your next meal, or at your next food-shopping trip. In reality, some individuals and families need to make changes in a step-by-step fashion in order for changes to be lasting. The important point here is to make life-long, permanent changes. Discuss these changes with your family, and select which change will be the easiest to implement first. Set a realistic time frame for change (it may be a few weeks to a couple of months). Researching new places to shop and source food will be necessary. If you do need to progress to an Integrative health practitioner, much of the challenging diet change work will already be done. Most people notice enormous, positive changes in their children’s and family’s health by simply eating according to these principles. Often, the improvement in general health assists in revealing the precise clinical issue requiring attention, as opposed to being concealed by many lower grade or sub-clinical health issues.



Cellular and digestive health improves and can be recovered via targeted nutritional therapies and integrative medicine. The improvements in health are a physiological and biochemical cascade; the enhanced nutrient utilisation supports neurotransmission in the brain. These positive changes go on to further support allied and behavioural therapies. The human brain is incredibly plastic; very much so when we are young. A healthy diet, home and environment support’s the cells and structures needed for neural plasticity to reveal its full potential.


  1. Sanders, T., Liu, Y., Buchner, V., & Tchounwou, P. B. (2009). Neurotoxic Effects and Biomarkers of Lead Exposure: A Review. Reviews on Environmental Health, 24(1), 15–45.
  2. Castoldi A, Coccini T, Manzo L. (2003). Neurotoxic and molecular effects of methylmercury in humans. Reviews on Environmental Health. Jan-Mar;18(1):19-31.
  3. DeFuria, J. and Shea, T. (2007). Arsenic inhibits neurofilament transport and induces perikaryal accumulation of phosphorylated neurofilaments: roles of JNK and GSK-3beta. Journal of Brain Research. Nov 21; 1181: 74-82.
  4. Gomez-Pinilla, F., & Gomez, A. G. (2011). The Influence of Dietary Factors in Central Nervous System Plasticity and Injury Recovery. PM & R : The Journal of Injury, Function, and Rehabilitation, 3(6 0 1), S111–S116.
  5. Dick, F. D. (2006). Solvent neurotoxicity. Occupational and Environmental Medicine, 63(3), 221–226
  6. Rosales, F. J., Reznick, J. S., & Zeisel, S. H. (2009). Understanding the Role of Nutrition in the Brain & Behavioral Development of Toddlers and Preschool Children: Identifying and Overcoming Methodological Barriers. Nutritional Neuroscience, 12(5), 190–202.
  7. Nyaradi, A., Li, J., Hickling, S., Foster, J., & Oddy, W. H. (2013). The role of nutrition in children’s neurocognitive development, from pregnancy through childhood. Frontiers in Human Neuroscience, 7, 97.


Neurotransmitters: minute chemicals delivering powerful messages

The nervous system of human beings is undoubtedly one of the most complex and challenging systems to try and understand. Whilst we all have a good understanding of brain health, and what to do to keep our brain healthy (such as learning languages or musical instruments, engaging in hobbies, meditation and social interaction), you may not know much about the smaller, minute chemical details of what makes our nervous system tick. These chemicals are known as neurotransmitters, and their functions are far more expansive and important to your health than you may realize.

Every day, your nervous system receives millions of signals from sensory organs such as the eyes, ears, skin, nose and tongue. These actions allowing us to read, listen to music or taste food are relatively straightforward to comprehend. However, your nervous system also controls the movement of every muscle fiber in your body (including the cardiac muscle of the heart, and the smooth muscle of your entire digestive tract). The nervous system also responds to the ever-changing chemical environment of your body,such as fluctuations in acidity/alkalinity, inflammatory changes and mood, to name just a few. It is bewildering to contemplate just how the nervous system achieves all this. By looking at individual neurotransmitters, we can begin to appreciate the minute yet utterly powerful actions of these chemical messengers.

Acetylcholine (ACh) was the first neurotransmitter ever discovered. Out of all neurotransmitters, ACh is probably the most far reaching in terms of effect. It is involved in nerve impulse transmissions in both sympathetic (stress) and parasympathetic (rest/digest) responses throughout every cell and organ in the body.

Its name simply comes from its chemical structure; ‘acetyl’ is a very small chemical species that contains only a little carbon and hydrogen (C3H6), while choline is more like a lipid (fat). We make our own ACh; we do not need to obtain it from food or supplements. Without ACh, our nervous system would simply cease to function. Diseases like Alzheimer’s disease show marked
reduction in ACh concentrations in specific areas of the brain, while Myasthenia gravis is an autoimmune disease affecting the role of ACh in muscle contraction.

Generally not appreciated as a neutransmitter, histamine is well known for its role in allergy and inflammation. However, its role as a neurotransmitter is essential for preventing sleep, keeping us awake (hence the reason why antihistamines generally make us drowsy). It is synthesized in the body via the amino acid, histidine. Again, histidine is readily supplied by most foods in our diet. Many people on the path to healing allergies and food intolerances are eating a low histamine diet to reduce the occurrence of hives, rashes, sneezing and gut pain. However, the strong link between histamine, the brain and nervous system mean that migraines, drowsiness and moodiness are reported as alleviated for many people adopting low histamine diets.
Dopamine is synthesized via several steps that begin with an essential component of our diet, the amino acid phenylalanine. Phenylalanine is firstly converted to tyrosine (in the liver). After several steps, tyrosine is then converted to Dopamine. Interestingly, this process relies heavily on vitamin B6, and would not occur if we did not consume any phenylalanine in the diet. Luckily, phenylalanine is found in most foods, regardless of the diet we follow.

Dopamine is rather versatile. It has a role to play in movement, memory, mood, pleasure/reward, behavior, sleep, learning and attention. Both excessive and insufficient levels of dopamine are implicated in ill health, spanning both physical and mental health conditions.

Conditions associated with abnormalities of dopamine function include Parkinson’s disease (dopamine deficiency) and possibly Schizophrenia (overstimulation of specific dopamine receptors in the brain). Low dopamine activity has also been linked to addiction, ADHD, risk-taking and strong reward/pleasure-seeking behaviors.

Adrenaline and noradrenaline
Adrenaline (epinephrine) is both a neurotransmitter and a hormone. It is synthesized in the adrenal glands and some neurons. It is actually synthesized from dopamine; hence it follows the same pathway as dopamine production, with a few extra chemical reactions to finally produce adrenaline. It is an excitatory neurotransmitter, with low levels being associated with fatigue, inability to focus, poor attention span, difficulty sleeping and difficulty losing weight. Interestingly, these are often symptoms described by individuals under high stress, with adrenal exhaustion.

Noradrenaline (norepinephrine) is related to adrenaline, but is farmore widespread throughout the body. Like adrenaline, it is excitatory; thus it increases wakefulness, alertness and vigilance. It is paramount during stress, the ‘fight or flight’ response allowing us to focus and retrieve memories. It also increases restlessness and can promote anxiety. Generally, high levels are associated with prolonged stress and ADHD.

Serotonin is regularly referred to by its more chemical name, 5-hydroxytryptamine (5-HT). Serotonin is another of our neurotransmitters derived from an amino acid; in this case, tryptophan. Tryptophan is an essential amino acid; we must supply it to our body via our diet.

90% of serotonin in the human body is located in the gastrointestinal (GI) tract, making this neurotransmitter extremely interesting to medical science. Not only does serotonin regulate motility of the GI tract, it is involved in central nervous system functions such as sleep, appetite, mood, learning and memory. Clinically, abnormalities of serotonin function have been linked with an array of health conditions from over-eating and obesity, through to major depression, obsessive-compulsive disorder (OCD) and anxiety. The emerging scientific evidence linking gut health with mental health is due in part to the activity of serotonin in these two anatomically separate, yet biochemically linked organs.

Glycine is an amino acid neurotransmitter, which is non-essential in the diet. It can be synthesized in the human liver, but this relies on the adequate supply of activated vitamin B9 from our diet. Glycine is simple in its molecular structure (it is the smallest amino acid). It functions primarily in the spinal cord, having inhibitory
effects on information that co-ordinates movement, vision and hearing. It assists in reducing hyper excitability of the nervous system, with some studies linking low glycine levels with hyperactivity, schizophrenia, bipolar disorder and epilepsy.

Glutamate is the major excitatory neurotransmitter of our nervous system. It links in with pathways for many of the other neurotransmitters, and receptors responding to glutamate are located throughout our brain and spinal cord. Glutamate comes from the amino acid, glutamic acid (it is the base pair of this acid). Humans synthesize glutamate within our nerve cells from a range of precursor substances, including glutamine. As glutamate is excitatory in its role, it’s responsible for cognition, memory and learning. In diseases involving glutamate, this neurotransmitter can accumulate outside of nerve cells, continually stimulating them and leading to excitotoxicity. This can eventually lead to destruction of functional nerve tissue. Examples include Alzheimer’s disease and the cascade of destruction that follows a stroke.

Gamma-amino butyric acid (GABA)
GABA is the inhibitory neurotransmitter partner of the excitatory glutamate. These two neurotransmitters work together to balance brain activity. While it may sound negative to have inhibitory effects on the nervous system, GABA is vital for the sedation that precedes sleep, and it is imperative for relaxation. Humans synthesize GABA in the brain from its excitatory partner, glutamate. Again, vitamin B6 is required for this biochemical conversion. Supplements of GABA do exist, mainly for the treatment of hyperactivity and poor sleep. However, there is no evidence GABA taken orally will cross the blood brain barrier to reach GABA target nerve cells in the brain. Additionally, the human body is very proficient at GABA regulation, meaning supplementation is likely ineffective.

Takeaway points

Inhibitory (Calming) NeurotransmittersGABA
Acetylcholine (both)
Dopamine (both)
Excitatory (Stimulating)NeurotransmittersDopamine (both)
Acetylcholine (both)

Written by Annalies Corse, ND.

1 Waymire, J. Acetylcholine Neurotransmission. Neuroscience Online. Department of Neurobiology and Anatomy, The UT Medical School at Houston. Available at:
2 Glutamate-Related Biomarkers in Drug Development for Disorders of the Nervous System: Workshop Summary. Available at:
3 Lopez-Corcuera, B. (2001). Glycine neurotransmitter transporters: an update. Molecular Membrane Biology. 18(1): 13-20. Available at:
4 University of Bristol. Serotonin. A molecule of happiness. Available at:
5 Maintz, L., Novak, N. (2007). Histamine and Histamine Intolerance. The American Journal of Clinical Nutrition. Available at:, D. (2010). Adrenaline and Noradrenaline. Citable Reviews in the Life Sciences. Available at: